


PFAS – Managing the shifting sands of science and regulation with an emerging contaminant

**ROSS EDWARDS - PRINCIPAL** 



## A Shifting Risk Paradigm?



### **Modern Response to CLM**

- Precautionary Principal
- Licencing of industrial and commercial premises -Discharge limits
- Pollution abatement and Clean Up Notices
- National Environment Protection (Assessment of Site Contamination) Measures and revision

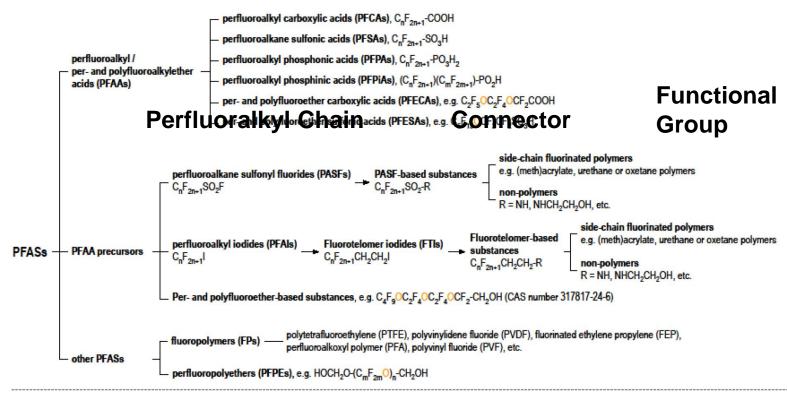




# Tier 1 Screening Levels – Soil (mg/kg)

- ANZECC 1992 Few criteria used
   Dutch A-B-C and even use of ICRCL
- National Environment Protection
   (Assessment of Site Contamination)
   Measure first in 1999, then revised and issued in 2013
- PFAS NEMP Local numbers based on FSANZ, Canadian ecotox

| Substances                                         | ICRCL<br>(UK) <sup>1</sup> | ANZEC<br>1992/Dutch<br>B <sup>2</sup> | NEPM 1999<br>- HIL A | NEPM 2013 – HIL A                     | PFAS NEMP<br>2018 -<br>Residential |
|----------------------------------------------------|----------------------------|---------------------------------------|----------------------|---------------------------------------|------------------------------------|
| Lead                                               | 500                        | 150                                   | 300                  | 300 – 1100 (>2yrs old)                | -                                  |
| Petroleum Hydrocarbons                             |                            |                                       |                      |                                       | -                                  |
| Mineral Oil (HC Mixtures)                          | -                          | 1000<br>(5000<br>Dutch C)             | 50004                | -                                     | -                                  |
| C <sub>6</sub> – C <sub>10</sub> (- Sum BTEXN)     | -                          | -                                     | -                    | 45 (sand) – 50 (clay) <1 m depth      | -                                  |
| >C <sub>10</sub> – C <sub>16</sub> (- naphthalene) | -                          | -                                     | -                    | 110 (sand) – 280 (clay) <1 m<br>depth | -                                  |
| > C <sub>16</sub> – C <sub>35</sub> Aromatics      | -                          | -                                     | 90                   | -                                     | -                                  |
| > C <sub>16</sub> – C <sub>35</sub> Aliphatics     | -                          | -                                     | 5600                 | -                                     | -                                  |
| C <sub>35</sub> Aliphatics                         | -                          | -                                     | 56000                | -                                     | -                                  |
| PAH (Total)                                        | 50                         | 20                                    | 20                   | 300                                   | -                                  |
| Benzo (a) pyrene                                   | -                          | 1                                     | 1                    | 3 (BAP TEQ)                           | -                                  |
| Benzene                                            | -                          | 0.5                                   | 14                   | 0.5 (sand) – 0.7 (clay) <1m depth     | -                                  |
| PCB (Total)                                        | -                          | 1                                     | 10                   | 1                                     | -                                  |
| Vinyl Chloride                                     | -                          | 53                                    | 0.14                 | 0.03 (mg/m³)                          | -                                  |
| PFAS                                               |                            |                                       |                      |                                       |                                    |
| 6:2 FTS                                            | -                          |                                       |                      | 60                                    | -                                  |
| PFOS                                               | -                          | -                                     | -                    | 6                                     | 0.009                              |
| PFOA                                               | -                          | -                                     | -                    | 16                                    | 0.1                                |
| PEHxS                                              |                            |                                       |                      | -                                     | 0.009                              |

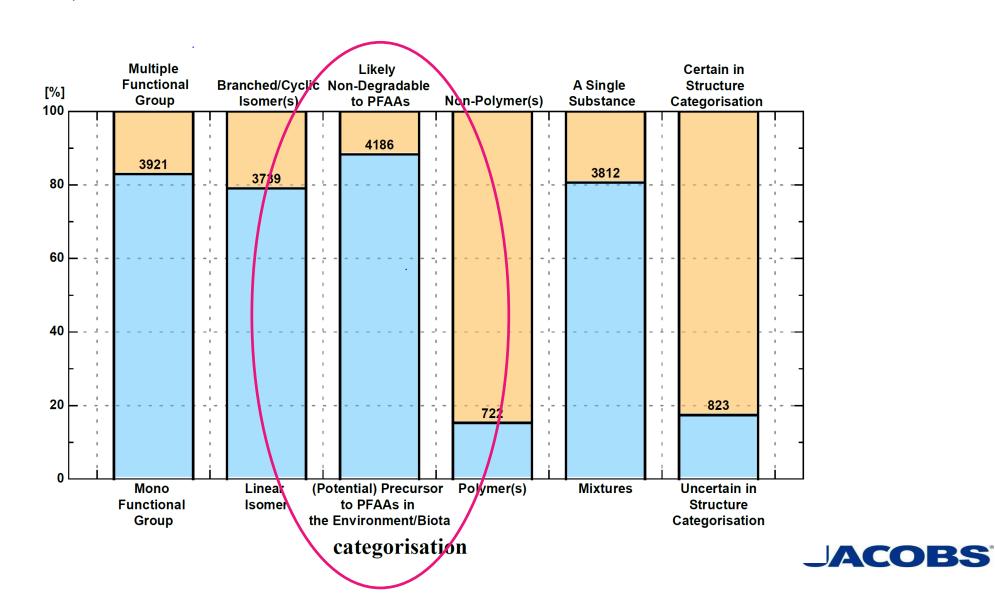

#### NOTES

- 1: ICRCL 59/83 Guidance on the Assessment and Development of Contaminated Land Threshold Levels (regarded as uncontaminated)
- 2: Netherlands A-B-C Value pollutant should be investigated more thoroughly
- 3: Dutch value for individual aliphatic compounds
- Dutch 2000 Intervention Level

### PFAS – What Are they?

#### a) Commonly recognised per- and polyfluoroalkyl substances (PFASs)

that have a perfluoroalkyl chain of certain length




b) Other highly fluorinated substances that match the definition of PFASs, but have not yet been commonly regarded as PFASs

```
perfluorinated alkanes (C_nF_{2n+2}) perfluorinated alkanes (C_nF_{2n}) and their derivatives (e.g. [(CF_3)_2CF]_2C=C(CF_3)(OC_6H_4SO_3Na), CAS number 70829-87-7) perfluoroalkyl alcohols (C_nF_{2n+1}OH); e.g. (CF_3)_3C-OH, CAS number 2378-02-1), perfluoroalkyl ketones (e.g. C_nF_{2n+1}C(O)C_mF_{2m+1}) and semi-fluorinated ketones (e.g. C_nF_{2n+1}C(O)C_mH_{2m+1}) side-chain fluorinated aromatics, e.g. C_nF_{2n+1}-aromatic rings some hydrofluorocarbons (HFCs, e.g. C_nF_{2n+1}-C_mH_{2m+1}), hydrofluoroethers (HFEs, e.g. C_nF_{2n+1}OC_mH_{2m+1}) and hydrofluorocelfins (HFOs, e.g. C_nF_{2n+1}CH=CH_2)
```



### **OECD – 4730 PFAS**



### **PFAS Use - AFFF**

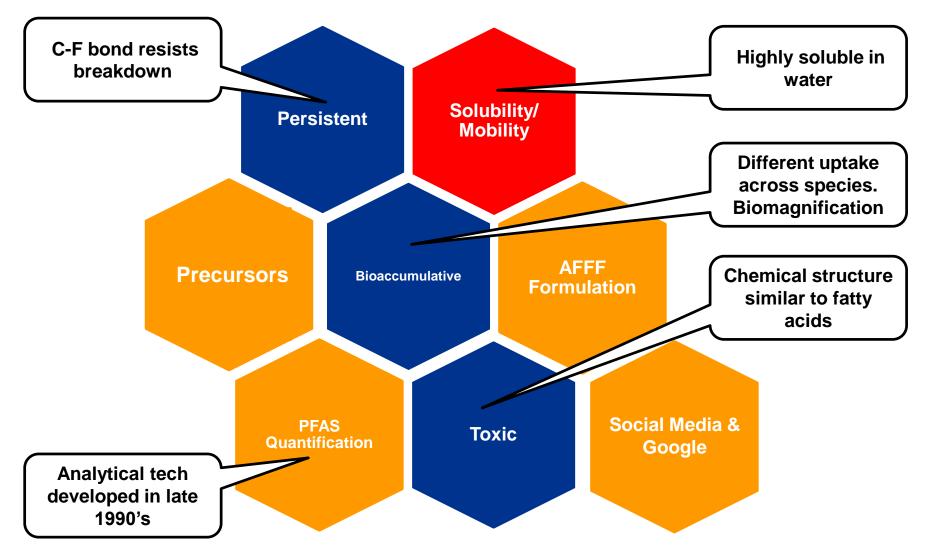
- PFAS AFFF Very effective on Class B Fires Flammable and Combustible Liquids
- Use often mandated (e.g. Insurance, Major Hazard Facilities, Design)
- Supress vapours, reduces static, prevents reignition





http://williamsfire.com/files/PDFs/TFPP-C8-

### **Other Potential Sources are available**


### **Other PFAS Sources**

- Landfills
- Electroplating
- Wastewater Treatment
- Biosolids land application
- Chemical Storage





### **PFAS – Changing Risk Paradigm – PBT+S**





### **Secret Formulas?**

- Poor regulation on AFFF SDS
- Legislation allows manufacturers to say no data available (<1% vol. & variable ID of PFAS)
- Proprietary information

#### **Chemical Name Percentage OSHA Hazard CAS Number** Water **Balance** 7732-18-5 NO YES 4 – 13 % 112-34-5 Diethylene glycol monobutyl ether YES Polysaccharide gum 1 - 2%**Proprietary** YES Proprietary hydrocarbon surfactants NA Proprietary Proprietary fluorosurfactants NA YES **Proprietary**

### Thunderstorm FC-601A MATERIAL SAFETY DATA SHEET



Date Prepared: 3/26/2010 Supersedes Date: New

#### 1. CHEMICAL PRODUCT AND COMPANY IDENTIFICATION

Product Name: Thunderstorm FC-601A

Chemical Family: Surfactant mixture, fire fighting foam concentrate, aqueous film forming foam.

Company Identification: Chemguard, Inc.

204 South 6th Avenue

Mansfield, Texas 76063 USA (817) 473-9964 (For Product Information)

(817) 473-9964 (For Product Information) (817) 473-9964 (For Emergency Information)

www.chemguard.com

#### 3. HAZARDS IDENTIFICATION

| EMERGENCY OVERVIEW                             |     |
|------------------------------------------------|-----|
| LINEROLING I OVERVIEW                          |     |
| WARNING! MAY CAUSE EYE AND/OR SKIN IRRITATION  | All |
| HARMING: MAT GAGGE ETE AND/OR SKIN INKLITATION | •   |

Routes of Exposure:

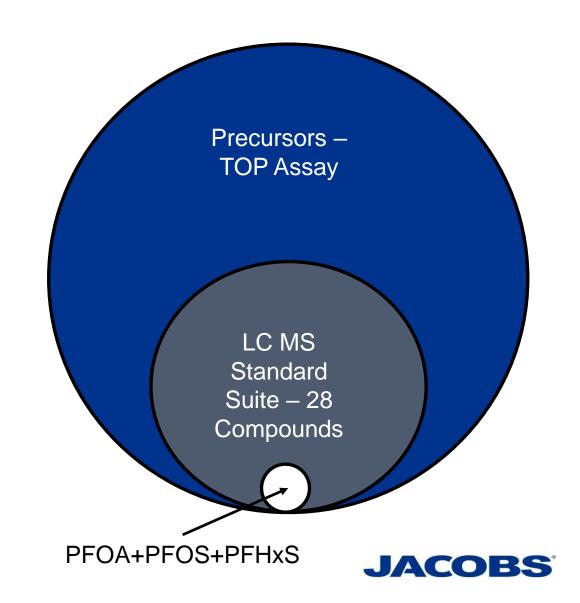
Eye Contact: Exposure during the handling or mixing may cause immediate or delayed irritation or inflammation.

Skin Contact: Exposure during the handling or mixing may cause immediate or delayed irritation or inflammation.

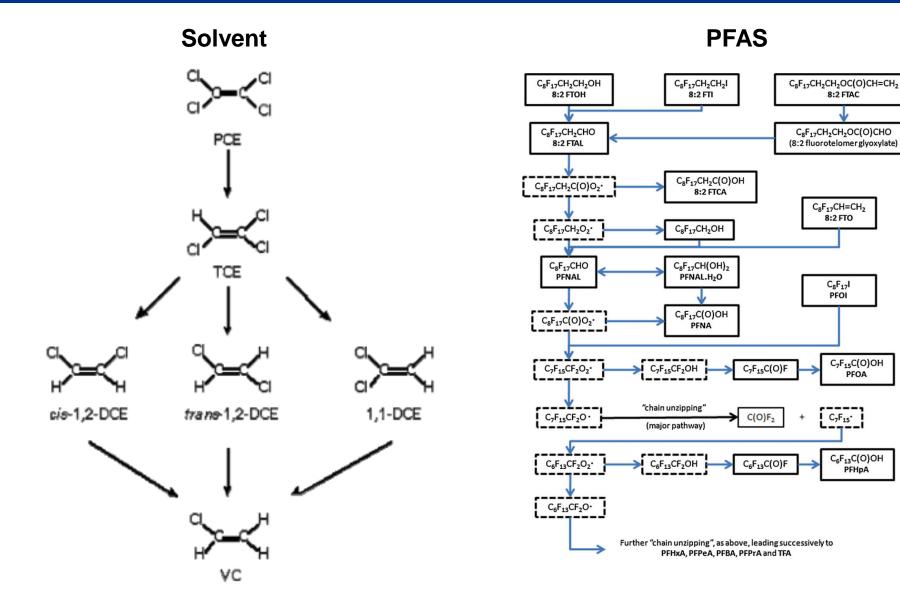
Ingestion: Ingestion of large quantities may cause abdominal cramps, nausea, vomiting, diarrhea.

<u>Inhalation:</u> Exposure to this product in excess of the applicable TVL or PEL may cause or aggravate other lung conditions. Exposure to this product may cause irritation to the nose, throat, and upper respiratory system.

Chronic: None known


<u>Medical Conditions which May be Aggravated by Inhalation or Dermal Exposure:</u> Persons with unusual (hyper) sensitivity to chemicals may experience adverse reactions to this product.

CHEMGUARD Page 1 of 6 Last Updated 9/08/2009


COBS

### **Precursors**

- Degradation
- PFAS tend to degrade at a few stable end products – PFOS, PFOA



### **Precursors & Partial Degradation**

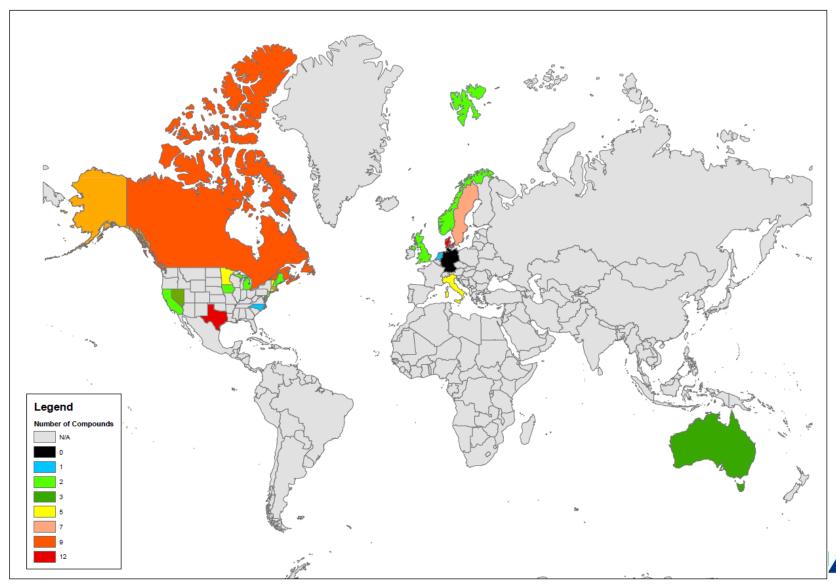




8:2 FTAC

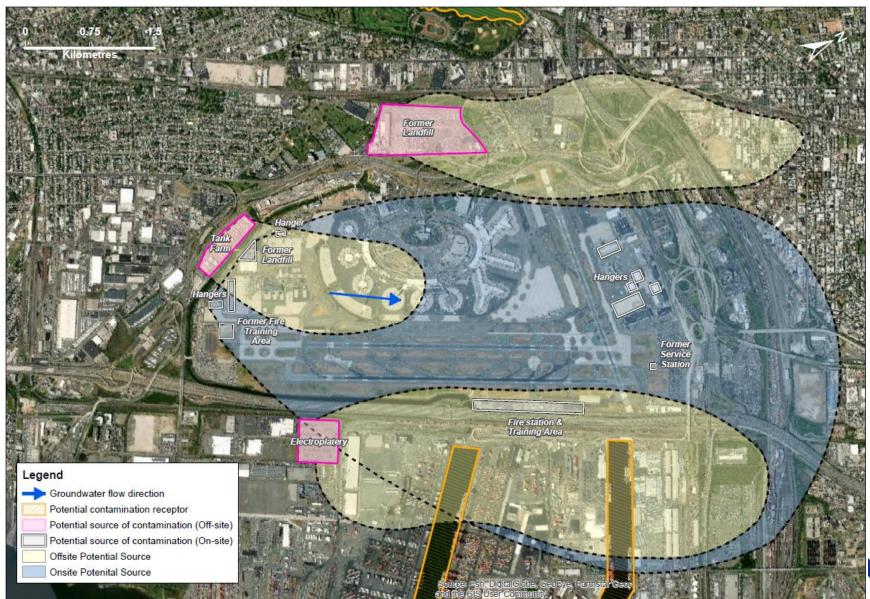
C<sub>8</sub>F<sub>17</sub>CH=CH<sub>2</sub> 8:2 FTO

> C8F17I **PFOI**


C<sub>7</sub>F<sub>15</sub>·

 $C_7F_{15}C(O)OH$ 

 $C_6F_{13}C(O)OH$ 


PFHpA

# Global – No. PFAS With DW Criteria





### **A Theoretical Scenario**





## **Soil Remediation Overview**

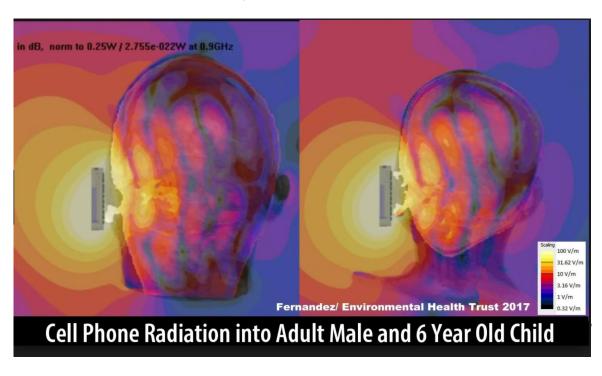
- Excavation
  - Landfilling retains liability
- Stabilization/Sorption
  - RemBind (Ziltek's carbon, activated alumina, kaolin clay)
  - Not clean closure
- Soil washing
  - Waste stream handling
- Thermal
  - Low or high temperature





# **Soil - Thermal**

| Study        | Thermal<br>Method            | Initial Total<br>PFAS Conc.<br>(µg/kg) | % Reduction in Total PFAS         | Exposure<br>Temperature/Ti<br>me                            | PFAS<br>Analysed    |
|--------------|------------------------------|----------------------------------------|-----------------------------------|-------------------------------------------------------------|---------------------|
| Jacobs       | Infrared<br>Heating          | 200                                    | 26                                | 250°C for 8 days                                            | 24 PFAS<br>analyzed |
| Jacobs       | Vapor<br>Energy<br>Generator | 40                                     | Minimal<br>50<br>>99.9            | 482°C for 15 mins<br>593°C for 15 mins<br>954°C for 30 mins | 10 PFAA<br>analyzed |
| Jacobs       | Infrared<br>Heating          | 290                                    | 89.3-99.8<br>97.3-100<br>99.8-100 | 400°C for 60 mins<br>550°C for 50 mins<br>700°C for 80 mins | 24 PFAS<br>analyzed |
| Confidential | Rotary Kiln                  | 175                                    | >99.9                             | 450°C for <20 min                                           | 20 PFAS<br>analyzed |
| Confidential | Rotary Kiln                  | 1200                                   | >99                               | 700°C for <20 min                                           | 16 PFAS<br>Analyzed |




# Groundwater Treatment (others may be available)

| Technology                                              | Advantages                                         | Considerations                           |
|---------------------------------------------------------|----------------------------------------------------|------------------------------------------|
| Reverse Osmosis                                         | Short-chain, can clean/regenerate                  | Dealing with rejected stream – pre-treat |
| Ozone Fractionation                                     | Can handle high organics                           | Multiple-stage process                   |
| Flocculation/Coagulation                                | Combinations can address short and long chain PFAS | Disposal of flocculant                   |
| Electrochemical Precipitation/Oxidation                 | Precursor transformation                           | Tests indicate minimal PFOS destruction  |
| In-situ – Chemical<br>Oxidation & Foam<br>Fractionation | Less Ex-situ Palava                                | Earlier stages of development            |
| In-situ Biodegradation                                  | Use of biological processes to treat precursors    | Time, only precursors                    |

### **Summary - Management, Remediation and Stakeholders**

- Phase our PFAS in AFFF without compromising performance is on the horizon
- Publication of criteria give people something more tangible PFAS NEMP Revision <12 months</li>
- Remedial solutions have matured deal with large diffuse plumes and waste
- Stakeholders Risk context is important unlike phones risk is involuntary
- Risk Assessment focus on those that partially degrade to the more stable end products



### Have We Learned?





by Josh Siegel | Feb 5, 2018, 4:45 PM















# Thanks





## **Tier 1 Screening Levels - Groundwater**

| Substances                                         | ICRCL<br>(UK) <sup>1</sup> | ANZEC<br>1992/Dutch<br>B <sup>2</sup> | NEPM 1999<br>– Drinking<br>Water | NEPM 2013 –<br>Drinking<br>Water | PFAS NEMP<br>2018 – Drinking<br>Water |
|----------------------------------------------------|----------------------------|---------------------------------------|----------------------------------|----------------------------------|---------------------------------------|
| Lead                                               | -                          | 50                                    | 10                               | 10                               | -                                     |
| Petroleum Hydrocarbons                             | -                          | -                                     |                                  |                                  | -                                     |
| Mineral Oil (HC Mixtures)                          | -                          | 200                                   | 600 <sup>3</sup>                 | -                                | -                                     |
| C <sub>6</sub> – C <sub>10</sub> (- Sum BTEXN)     | -                          | -                                     | -                                | 1                                | -                                     |
| >C <sub>10</sub> - C <sub>16</sub> (- naphthalene) | -                          | -                                     | -                                | 1                                | -                                     |
| PAH (Total)                                        | -                          | 10                                    | 3                                | -                                | -                                     |
| Benzo (a) pyrene                                   | -                          | 0.2                                   | 0.01                             | 0.01                             | -                                     |
| Benzene                                            | -                          | 1                                     | 1                                | 1                                | -                                     |
| PCB (Total)                                        | -                          | 0.2                                   | 0.001                            | 0.014                            | -                                     |
| Vinyl Chloride                                     | -                          | 10                                    | 0.3                              | 0.3                              | -                                     |
| PFAS                                               | -                          | -                                     | -                                |                                  |                                       |
| 6:2 FTS                                            | -                          | -                                     | -                                | 5                                | -                                     |
| PFOS                                               | -                          | -                                     | -                                | 0.2                              | 0.075                                 |
| PFOA                                               | -                          | -                                     | -                                | 0.4                              | 0.56                                  |
| PEHXS                                              | -                          | -                                     | -                                | -                                | 0.075                                 |

#### NOTES

- 1: Aquatic Ecosystem Fresh water criteria Drinking water not specified
- 2: Netherlands A-B-C Value pollutant should be investigated more thoroughly
- 3: Dutch 2000 Intervention Levels
- 4: Freshwater Aroclor 1254 Bioaccumulation potential
- 5: Criteria for PFOS + PFHxS

