

Using innovative methods to assess development impacts and biodiversity offset requirements in NSW

2018 AUSTRALASIAN NETWORK FOR ECOLOGY AND TRANSPORTATION CONFERENCE

John Seidel

NSW Office of Environment and Heritage

The journey so far – NSW context

OEH has been involved in negotiating offsets since 1995

Shift to method based approach -

- EOAM (2007)
- Biobanking assessment methodology (2008)
- Biodiversity certification assessment method (2012)
- Framework for Biodiversity Assessment (2014)

Land management and biodiversity conservation reforms (2014-2017)

- Biodiversity Conservation Act (2017)
- Biodiversity Assessment Method (2017)

Expanded biodiversity offsets scheme

Single assessment method - Biodiversity Assessment Method

Mandatory use of the BAM above set threshold

Opportunity for review

Biodiversity Assessment Method

Overview of NSW Biodiversity Offset scheme

<u>Credit system</u> and application of BAM provides common measure of impact/gain

Comprehensive framework for offset land that includes:

- Accredited assessments
- Ongoing management of land for conservation
- Funding for implementation
- Monitoring, reporting, auditing
- Secured on title

4. LOCATION OF THREATENED FLORA POPULATION

EPACRIS PURPURASCENS VAR. PURPURASCENS

Lappointed of the threastaned Galeria perparations on Jacpanisation was identified within the underlead shale landstates Transition Foreign within the subdress particle of MCE during the 2000-EEL reporting permit. An reported perioducity, we MCD place server constraint on the population which is transitional along the subdressment because two separations the south instrument increases.

p 7: Watche wowd recepting

Office of Environment & From vegetation strata to growth form

DRAFT: Habitat Hectare Version 2 Automation Marcan January 2014

COLUMN 1

Guide to determining terrestrial habitat quality A lookil for assessing land based offsets under the

and Environmental Oracts Pulicy

sign 1.1 December 2014

Benefits:

- Consistent field allocation with look-up table means greater assessor repeatability
- Growth form richness can be benchmarked
- Aligns with other jurisdictions

Vegetation Integrity (condition)

Data-driven benchmarks (replaces expert derived)

Continuous non-linear scoring (replaces ordinal 0-3 approach)

Dynamic weighting (replaces static)

New composition (C), structure (S), function (F) attributes

C-S-F sub-index aggregation via geometric mean

Habitat suitability for threatened species

Much of the TS assessment processes have been retained

- Focus on improving rigour of data and management needs
- Improved habitat condition assessment

- Greater emphasis on the mitigation hierarchy
- Biodiversity risk weighting based on threat status & response to gain
- Serious and irreversible impact category
- Less 'substitution' of biodiversity values within credit units
- Prescribed biodiversity impacts

Sensitivity to gain - ecosystem credit species (based on the species with the highest sensitivity impacted by the development, or biodiversity certification Sensitivity to Very high Medium High sensitivity loss - ecological Low sensitivity sensitivity sensitivity communities and (x's 2) (x's 1) (x's 3) (x's 1.5) PCTs CEEC or a PCT ≥90% cleared 2.5 2.25 2.0 Very high sensitivity (3) EEC or a PCT ≥70% - <90% 25 20 1.75 1.5 cleared High sensitivity (2) VEC or a PCT ≥50% - <70% cleared 2.25 1.75 1.5 1.25 Moderate sensitivity (1.5) PCT <50% cleared 2.0 1.5 1.25 1 Low sensitivity (x'1)

Table 18: Application of the biodiversity risk weighting - ecosystem credits

9

Components of gain

Averted loss: attribute annual average rate of decline in condition

Management gain: probability of reaching benchmark over a given timeframe (from mandatory management actions for threats and pressures)

Restoration gain: additional credit from active restoration (e.g. sowing/planting of species representative of the PCT, replacement of logs, stags, nest boxes, constructed hollows)

- BAM adopts a probabilistic approach: What is the probability of reaching benchmark over a 20-year timeframe?
- Rate of gain differs among attributes
- Explicit timeframe of 20 years

Modifiers to rate of gain

The rate of gain at each site is modified based on:

- Connectedness of the site (surrounding vegetation cover)
- Site resilience (a low vegetation integrity score)
- Extent of high threat weed cover (key threat)

High threat weed cover

Ecological outcomes from Biobanking (2010 – 2018)

- 87 approved agreements covering over 10,200 hectares
- Applications for a further 116 agreements (est. 12,000 ha)
- Over 8,000 hectares are TEC representing 39 different ecological communities
- 234 different Plant Community Types (or about 16% of PCT's listed in the NSW classification)
- Credits created for 91 different threatened species

Area and vegetation condition

Area & condition of vegetation - approved and submitted biobank sites

Questions

For more information on the NSW Biodiversity Offset Scheme http://www.environment.nsw.gov.au/biodiversity/offsetsscheme.htm