Addressing Uncertainty in EIA Practice

Claire Gronow Helen Ketelby, Cathy Galli, Richard Parsons, Nathan Zeman, Martin Fallding, Ian Baxter

Uncertainty

• Technical-rational model of EIA:

- Informed decision-making
 - Comprehensive information
 - Accurate predictions
- Positivist paradigm
- Uncertainty is

What is uncertainty

- 'A partial or total lack of understanding or knowledge of an event, its consequence, or its likelihood' (IESC January 2015)
- 'The state, even partial, of deficiency of information related to understanding or knowledge of an event, its consequence, or likelihood' (AS/NZS ISO 31000:2009)
- Uncertainty \neq probability

Outline

- Sources and causes of uncertainty
- Dealing with uncertainty

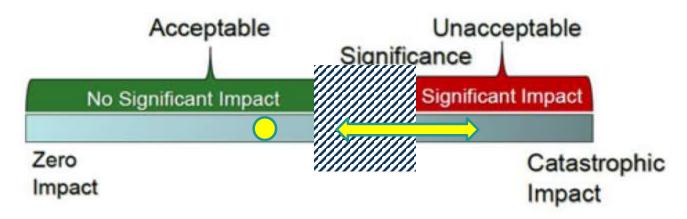
Parameter Uncertainty

- Lack of survey effort, spatial, temporal
- Inappropriate survey techniques
- Shifting baselines
- System complexity
- Determining the value/importance/sensitivity
- Practical and epistemological limitations to how much we can know (post-positivism)

Model uncertainty

- Two types of models are used in IA:
 - Conceptual models
 - Describe the interactions in the social and environmental systems under study
 - Predictive models
 - Predict changes in systems when certain pressures are introduced
 - Quantitative, numerical/mathematical
 - Qualitative, descriptive

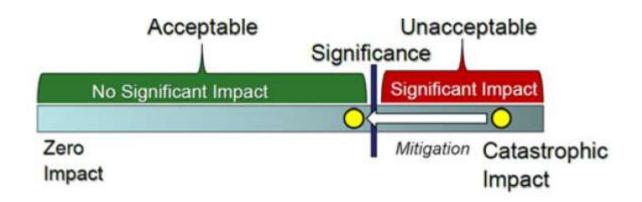
Model uncertainty


- Incorrect inputs and assumptions (conceptual and predictive models)
- Understanding of cause and effect relationships
- Insufficient knowledge of the proposed activity
 - Magnitude of changes
- Modeller bias (conscious and unconscious)
 - Assumptions
 - Interpretation of results

Systemic uncertainty

- Cumulative, synergistic, simultaneous and interactive impacts
- Natural disasters
- Recovery rate and success
- Particularly significant in large scale and/or long-term analyses

How Uncertainty is Compounded


- Acceptability of impacts
 - Determine threshold of significance for each environmental or social component
 - Decide which side of the threshold the predicted adverse impact falls on (Ehrlich & Ross, 2015)

Compounding uncertainty

• Mitigation of impacts

 For unacceptable impacts, decide if mitigation measures can make the residual impact acceptable

- Precautionary principle in some legislation
- South Australia Ministerial determinations
 - Uncertainty description
 - Uncertainty assessment

- Limited guidance available for technical studies:
 - IESC groundwater modelling, water-related ecological responses
 - WA/GBRMPA dredge plume modelling guidelines
 - NSW SIA guidelines
 - Sensitivity analysis, justification of assumptions

- Approaches examine a range of possible outcomes:
 - Model realistic and (reasonable) worst case scenarios
 - Bayesian networks
 - NSW SIA guidelines:
 - Impacts are 'significant' if two or more significance criteria (duration, extent, severity, sensitivity) are unknown

Responses

- Adaptive management
 - Limited guidance on how to do this
 - Significant issues with post-approval enforcement of compliance checking, also validation
- EPBC Act offsets policy higher offset ratios if higher uncertainty
- Almost no follow up or validation

- The need to deal with uncertainty is recognised in Terms of Reference/Guidelines:
 - "provide all available baseline information relevant to the environmental risks of the project ... and any uncertainties in the information." (Queensland Generic ToR)
 - "characterise, quantify and address uncertainties that may affect the effectiveness of management measures and therefore on the confidence that biodiversity values would be maintained ..." (EPBC Act guidelines)

Reporting Uncertainty

- Patchily addressed in specialist (modelling) reports
 - IESC highly critical of many water/groundwater assessments
- Poorly addressed in EISs
 - SA Central Eyre Iron Project good example
- Rarely addressed in Regulator's assessment report

Reporting Uncertainty

- Avoidance behaviour (Leung et al 2015)
 - Proponents hate to appear uncertain
 - Scientists are taught to be certain or silent
 - Engineers are taught to reject uncertainty
 - Decision-makers demand certainty

Decisions

- Very rare for uncertainty to be a factor
- Refusals based on uncertainty
 - WA Shark nets on Perth beaches (2015)
 - Qld Traveston Dam (2009)
 - NZ undersea mining (2013) (approved 2017 but appeals lodged)

Conference theme

Uncertainty contributes to wicked problems

- Uncertain about values
- Science is not providing us with complete, accurate information
- Wicked solutions require us to find ways to move forward in the face of uncertainty

Recommendations

- EIA practice could be improved:
 - Reduce uncertainty as far as practicable
 - Be clear what we don't know
 - IA-SIS to produce guidelines
- We need to recognise inherent and intractable uncertainty
 - Make decisions anyway
 - Be able to move forward

Recommendation

 Enable environmental practitioners to give good advice in the face of inherent and intractable uncertainty in environmental and social science