

"Solar drying of brine – better understanding leading to improved decision making"

Chris Gimber (BE, MIEAust, CPEng, NPER, RPEQ, IntPE) Technical Advisor – Environmental Engineering

- Municipal
- Mining
- CSG

Reverse Osmosis

• What should be done with the brine?

2

Options:

- 1. pipeline transfer to the coast for ocean discharge
- 2. aquifer injection
- 3. generation of <u>saleable salt</u>
- 4. permanent <u>storage</u> (e.g. in a mine void).
- 5. drying followed by encapsulation (e.g. in a regulated waste facility)

Solar drying

Common misconceptions:

- Evaporation>Rainfall : Leave in a pond and it will evaporate
- Evaporation<Rainfall : Solar drying cannot work

Engineering & Construction

Engineering & Construction

Engineering & Construction

Appreciation – Solar drying facilties

- Storage ponds: 5-8 m deep
- Solar concentrators: 1.5-3m deep
- Solar crystallisers: <1m deep

Appreciation – Solar drying facilties

- Liners important for inland settings
- Liners need to deal with heat and aggressive chemistry

13

Appreciation – Evaporation rate

Appreciation – Evaporation rate

Salt factor should be estimated based on:

- Geochemical modelling based on brine chemistry
- Bench scale testing
- Field trails

Different water compositions will behave very differently when drying

- Review water chemistry
- Geochemical modelling (drying models)
- Trails

Appreciation – Salt crusting

Salt crusts can form that inhibit evaporation Mineral density > precipitate density (bouyant)

Engineering & Construction

KBR We Deliver

Appreciation – Geometry important

Engineering & Construction

INPUTS = OUTPUTS (rain) (evaporation)

Appreciation – Bitterns

Engineering & Construction

 A residual liquid (highly concentrated) will usually remain indefinitely

Appreciation – Biological activity

Biological activity can diminish evaporation

Appreciation – Management

We Deliver

Engineering & Construction

Solar drying can still work where rain>evaporation, with careful management

e.g. Annual average rainfall = 1035 mm

Annual average lake evaporation = 880 mm

Appreciation – Management

Framework

Chris Gimber Technical Advisor – Environmental Engineering <u>chris.gimber@kbr.com</u> 0419734969

