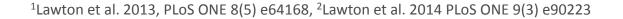


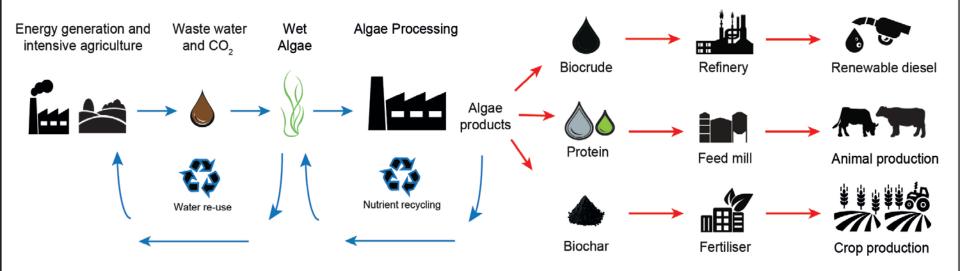
Renewable fuels from algal biomass

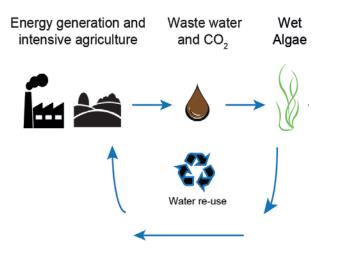
REN

cosmopolitan

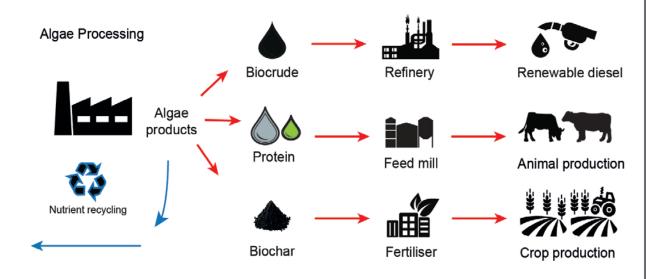

common

diverse^{1,2}

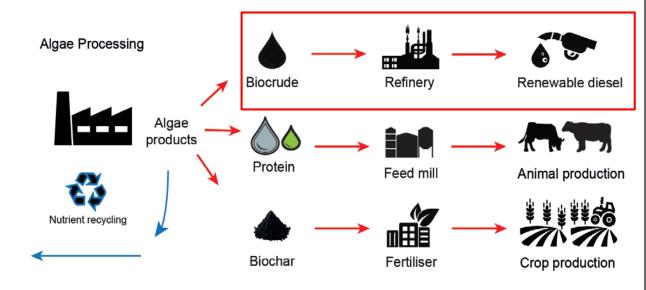

robust^{1,2}


highly competitive¹

rapidly dominant¹

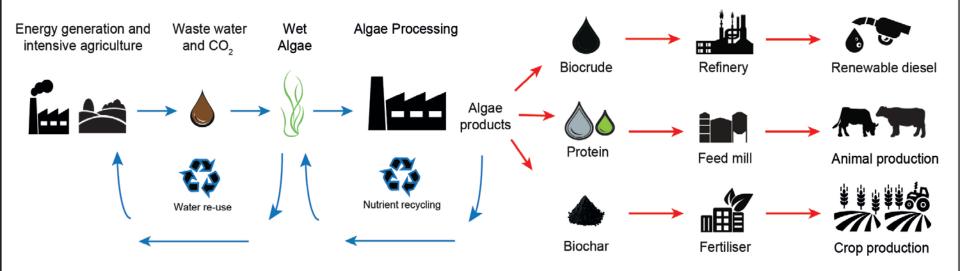


³Roberts et al. 2013 PLoS ONE 8(11) e81631, ⁴Ellison et al. 2014 PeerJ 2 e401,


⁵Cole et al. 2014 GCB Bioenergy doi 10.111/gcbb.12097, ⁶Cole et al. 2014 PLoS ONE in press

⁷Kan et al. 2014 Energy & Fuels 28, 104-114, ⁸Lane et al. 2014 Energy & Fuels 28, 41-51, ⁹Zhu et al. 2013, Pro. ACS 1-4,

¹⁰Neveux et al. 2014 GCB Bioenergy doi:10.1111/gcbb12171, ¹¹Neveux et al. 2014 Bioresource Technology 155, 334-341,


¹²Kidgell et al. 2014 PLoS ONE 9(6) e94706

⁷Kan et al. 2014 Energy & Fuels 28, 104-114, ⁸Lane et al. 2014 Energy & Fuels 28, 41-51, ⁹Zhu et al. 2013, Pro. ACS 1-4,

¹⁰Neveux et al. 2014 GCB Bioenergy doi:10.1111/gcbb12171, ¹¹Neveux et al. 2014 Bioresource Technology 155, 334-341,

¹²Kidgell et al. 2014 PLoS ONE 9(6) e94706

Oedogonium - integrated production

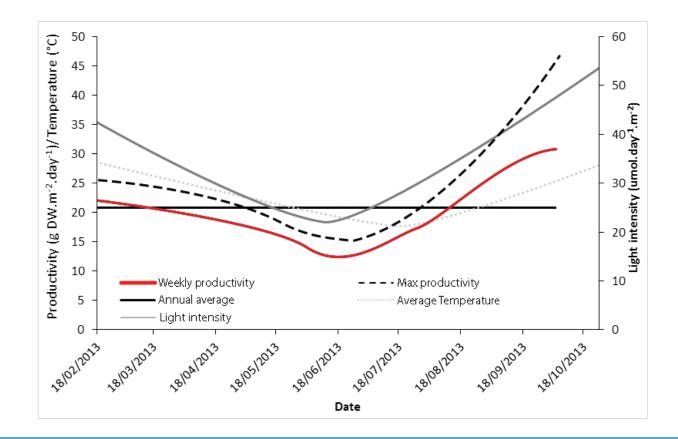
freshwater (agriculture)

no addition of nutrients

no addition of CO₂

no contamination

self harvesting


rapid growth^{5,6}

⁵Cole et al. 2014 GCB Bioenergy doi 10.111/gcbb.12097, ⁶Cole et al. 2014 PLoS ONE in press

Oedogonium - biomass productivity

freshwater (municipal)

no addition of nutrients

no addition of CO_2

no contamination

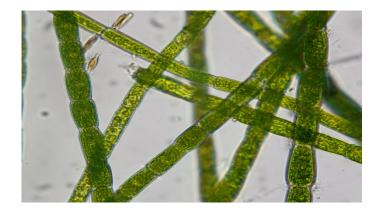
self harvesting

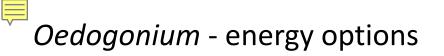
rapid growth

total crude lipids = 8.7 ± 1.5

total fatty acids = 4.9 ± 0.7

protein = 22.7 ± 3.4


carbohydrate = 45.6 ± 10.7


 $ash = 20 \pm 5.7$

Oedogonium

 $HHV = 16.5 \pm 2.1$

(n = 4 - 46)

anaerobic digestion

slow pyrolysis

fast pyrolysis⁷

direct combustion⁸

co-combustion⁹

hydrothermal liquefaction^{10,11}

⁷Kan et al. 2014 Energy & Fuels 28, 104-114, ⁸Lane et al. 2014 Energy & Fuels 28, 41-51, ⁹Zhu et al. 2013, Pro. ACS 1-4, ¹⁰Neveux et al. 2014 GCB Bioenergy doi:10.1111/gcbb12171, ¹¹Neveux et al. 2014 Bioresource Technology 155, 334-341

Macroalgae	Ultimate	Ultimate					
	СН	O N	S	MJ.kg ⁻¹			
Oedogonium	36.6 5.7	7 30.9 4.8	0.4	15.8			
C. vagabunda	37.5 5.9	9 32.9 6.5	1.8	16.4			
C. linum	26.5 4.2	1 31.0 3.4	2.1	10.3			
C. coelothrix	30.9 5.0) 34.9 5.2	2.3	12.7			
D. tenuissima	29.2 4.8	3 27.4 4.5	2.8	12.4			
U. ohnoi	27.7 5.5	5 41.1 3.5	5.0	11.7			

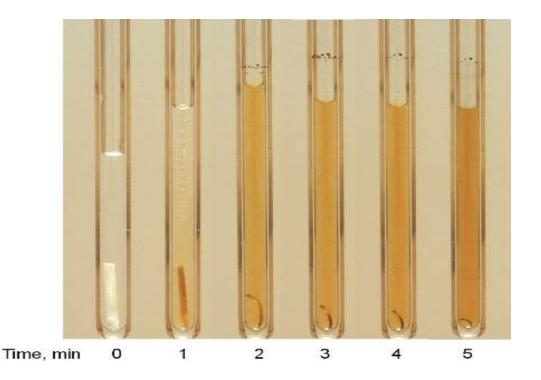
Macroalgae	Ultimate	HHV		
	СН	O N	S	MJ.kg ⁻¹
Oedogonium	36.6 5.7	30.9 4.8	0.4	15.8
C. vagabunda	37.5 5.9	32.9 6.5	1.8	16.4
C. linum	26.5 4.1	. 31.0 3.4	2.1	10.3
C. coelothrix	30.9 5.0	34.9 5.2	2.3	12.7
D. tenuissima	29.2 4.8	27.4 4.5	2.8	12.4
U. ohnoi	27.7 5.5	6 41.1 3.5	5.0	11.7

Macroalgae	Ultim	HHV				
	С	н	0	N	S	MJ.kg ⁻¹
Oedogonium	36.6	5.7	30.9	4.8	0.4	15.8
C. vagabunda	37.5	5.9	32.9	6.5	1.8	16.4
C. linum	26.5	4.1	31.0	3.4	2.1	10.3
C. coelothrix	30.9	5.0	34.9	5.2	2.3	12.7
D. tenuissima	29.2	4.8	27.4	4.5	2.8	12.4
U. ohnoi	27.7	5.5	41.1	3.5	5.0	11.7

Macroalgae	Ultimate		HHV	
	СН	O N	S	MJ.kg ⁻¹
Oedogonium	36.6 5.7	7 30.9 4.8	0.4	15.8
C. vagabunda	37.5 5.9	9 32.9 6.5	1.8	16.4
C. linum	26.5 4.2	1 31.0 3.4	2.1	10.3
C. coelothrix	30.9 5.0	0 34.9 5.2	2.3	12.7
D. tenuissima	29.2 4.8	8 27.4 4.5	2.8	12.4
U. ohnoi	27.7 5.5	5 41.1 3.5	5.0	11.7

hydrothermal liquefaction

subcritical water conditions


medium temperature (250 – 400°C)

high pressure (10 – 30 MPa)

macromolecule breakdown

water = solvent + reactant

hydrolysis recombination

Visualisation experiment – Wood in HTL University Twente – Quartz capillaries Prof. Van der Swaaij

Thermochemical processing - HTL

Research scale

350°C in 3 minutes + 350°C for 5 minutes 150 bar

Quenched and quantified

Biocrude

Biochar

Gaseous phase

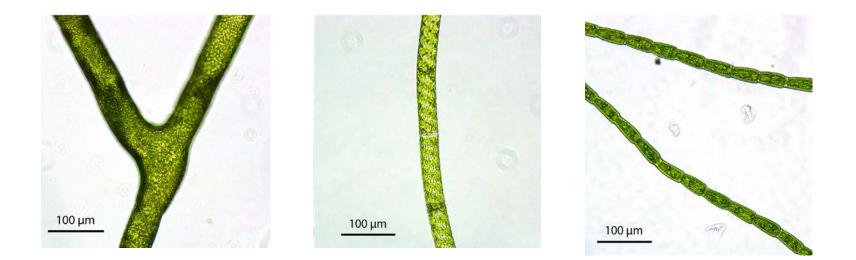
Aqueous phase

Macroalgae	Ultim	ate	HHV			
	С	н	0	N	S	MJ.kg ⁻¹
Oedogonium	72.1	8.1	10.4	6.3	0.8	33.7
C. vagabunda	71.1	8.3	10.6	6.8	1.3	33.5
C. linum	70.9	7.7	11.4	6.8	0.1	32.5
C. coelothrix	71.6	8.0	10.6	7.1	0.9	33.3
D. tenuissima	73.0	7.5	10.6	6.5	0.7	33.2
U. ohnoi	72.6	8.2	11.0	5.8	0.4	33.8

Macroalgae	Ultin	nate	HHV			
	С	н	0	N	S	MJ.kg ⁻¹
Oedogonium	72.1	8.1	10.4	6.3	0.8	33.7
C. vagabunda	71.1	8.3	10.6	6.8	1.3	33.5
C. linum	70.9	7.7	11.4	6.8	0.1	32.5
C. coelothrix	71.6	8.0	10.6	7.1	0.9	33.3
D. tenuissima	73.0	7.5	10.6	6.5	0.7	33.2
U. ohnoi	72.6	8.2	11.0	5.8	0.4	33.8
				1		

Macroalgae	Ultin	nate		HHV		
	С	Н	0	N	S	MJ.kg ⁻¹
Oedogonium	72.1	8.1	10.4	6.3	0.8	33.7
C. vagabunda	71.1	8.3	10.6	6.8	1.3	33.5
C. linum	70.9	7.7	11.4	6.8	0.1	32.5
C. coelothrix	71.6	8.0	10.6	7.1	0.9	33.3
D. tenuissima	73.0	7.5	10.6	6.5	0.7	33.2
U. ohnoi	72.6	8.2	11.0	5.8	0.4	33.8

Oedogonium sp. (20-100,000 L)


```
Biomass productivity 15 - 30 g m<sup>-2</sup>.day<sup>-1</sup>
Carbon content
                            35 - 43%
Biomass energy (HHV) 16 - 20 MJ.kg<sup>-1</sup>
Ash 6-11%
Biocrude yield 30 - 35 %
Biocrude energy 33 MJ.kg<sup>-1</sup>
Continuous Flow HTL (1 - 10 kg)
Pilot-scale commercial HTL (10 - 100 \text{ kg})
```


Renewable fuels from algal biomass

