Arrow Energy

LEAP Summit

Understanding risk profiles for environmental assessments and management

5 June 2015
- Participants level of engagement/experience and specific issues to address
- Definitions of the four assessment types (any ideas on the 4 types?)
- Opportunity to raise project examples to discuss / clarify?
- Overview of impact and risk assessment processes
- Detailed understanding of risk assessments
- Group exercise – practical application of risk assessment methods
- Management and conditioning of impacts and risks
- Revisit participants list of issues to address
Impact Assessment:

Sensitivity Assessment / Range Analysis:

Sensitivity analysis provides a way to show how a study’s results would be affected, and how responsive or sensitive those results would be, to changes in the values of specific variables.

(Cost-Benefit Knowledge Bank for Criminal Justice 2015)

<table>
<thead>
<tr>
<th>Sensitivity</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Storage in the ZAL</td>
<td>The Sc in slices 2, 3 and 4 was assigned to an equivalent S of 0.015</td>
</tr>
<tr>
<td>High Storage in the ZAL</td>
<td>The Sc in slices 2, 3 and 4 was assigned to an equivalent S of 0.075</td>
</tr>
<tr>
<td>Yeelirri Scenario – No Mootherwell</td>
<td>The Mootherwell Yeelirri was not active during the predictive model simulation</td>
</tr>
<tr>
<td>Yeelirri Scenario – Position</td>
<td>The Mootherwell yeelirri was shifted to the south-west, further away from Yarra Warta Spring</td>
</tr>
<tr>
<td>High K in the ZWC</td>
<td>Where Kh (Kv) in slice 7 was equal to 0.02 (0.002), this value was increased to 0.05 (0.005)</td>
</tr>
<tr>
<td>Increased Seepage from RSF</td>
<td>Seepage from the RSF was increased from 1% of rainfall recharge (281 m³/d) to 5% of rainfall recharge (1405 m³/d)</td>
</tr>
<tr>
<td>Recharge (+ 40%) – Steady State</td>
<td>The steady state model was run with increased then decreased recharge to the entire model domain.</td>
</tr>
<tr>
<td>Recharge (- 40%) – Transient</td>
<td>The predictive model was run with a decreased recharge component.</td>
</tr>
<tr>
<td>Change at GAB – change in K</td>
<td>The Kh and Kv of the Torrens Hinge Zone and Adelaide Geosyncline were increased from 1 x 10⁻⁶ m/s.</td>
</tr>
<tr>
<td>Constant Head – Constant Flux</td>
<td>The constant head nodes in slice 2 were replaced by well nodes injecting water into the model at a set rate determined during the steady state model calibration.</td>
</tr>
<tr>
<td>Constant Head – Reduced Heads</td>
<td>The constant head nodes in slice 2 were replaced by well nodes injecting water into the model however, the wells were injecting at a reduced rate.</td>
</tr>
</tbody>
</table>

(Olympic Dam Expansion EIS 2009)
Uncertainty Assessment / Analysis:

A state of incomplete knowledge.

(Cullen and Frey 1999 in: CSIRO 2010 *Uncertainty and Uncertainty Analysis Methods*).

Focus on achieving preferred environmental outcomes
Risk Assessment:

The process of determining the likelihood that a specified negative event will occur. (Investopedia 2015).

A systematic process of evaluating the potential risks that may be involved in a projected activity or undertaking. (Oxford Dictionary 2015).
Project examples wanting clarification?

Level of project definition - what, where, when and how?
Overview of impact and risk assessment processes

1. Define project activity/design
2. Establish values and predicted impacts on these values
3. Assess the consequence of impact on a value/receptor
4. If high
 4.1. If moderate
 4.2. If low/negligible
5. Identify and apply additional management measures
6. Residual Impact
7. Draft EIS and EM Framework
8. Identify possible fault/failure events
9. Assess the consequence of impact on a value/receptor
10. If extreme
 10.1. If high/moderate
 10.2. If low
9. Establish likelihood/frequency of possible event
10. Identify monitoring program and contingency measures
10. Apply standard monitoring measures
5. Modify activity/design
10. Modify activity/design
5. Apply standard management measures

* Categories as per AS4360
Overview of impact and risk assessment processes

1. Identify possible fault/failure events
2. Assess the consequence of impact on a value/receptor
3. Establish likelihood/frequency of possible event
4. If low
5. If low
6. If moderate
7. If extreme
8. Modify activity/design
9. Identify monitoring program and contingency measures
10. Apply standard monitoring measures

* Categories as per AS4360
Overview of impact and risk assessment processes

1. Define project activity/design
2. Establish values and predicted impacts on these values
3. Assess the consequence of impact on a value/receptor
 - If high:
 - If moderate:
 - If low/negligible:
 - If low/negligible:
 4. Modify activity/design
 5. Apply standard management measures

8. Identify possible fault/failure events
9. Assess the consequence of impact on a value/receptor
 - Establish likelihood/frequency of possible event
 - If extreme:
 - If high/moderate:
 - If low:
9. Identify monitoring program and contingency measures
 10. Apply standard monitoring measures
7. Draft EIS and EM Framework
For each aspect of each impact assessment chapter:

- Community perception / expectations
- Government issues / expectations
- Scientific analysis

Draft to Final ToR - Critical / Routine Matters
Table 3.1: Information Gap Analysis - Materials Management

<table>
<thead>
<tr>
<th>Project Component</th>
<th>Issue/Risk</th>
<th>Phase</th>
<th>Overall project priority</th>
<th>Delivery plan priority</th>
<th>Information Required</th>
<th>Information Source</th>
<th>Information Gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mine Expansion</td>
<td>Tailings</td>
<td>C, O, D</td>
<td>H</td>
<td>H</td>
<td>EPP Water</td>
<td>TOR 550 - The proposed location, site suitability, dimensions and volume of liquid disposal and storage ponds, including their design, method of construction and operation, any changes in technologies proposed to be utilized, management of runoff, overburden and waste rock stockpiles, mine water disposal, and management of liquid wastes from the tailings retention systems, associated seepages and evaporation ponds, is to be discovered and illustrated on appropriately scaled plans.</td>
<td>PFS EHS and Processing documents, Monitoring reports</td>
</tr>
</tbody>
</table>
Arrow Energy

Detailed understanding of risk assessments

<table>
<thead>
<tr>
<th>Description</th>
<th>Level</th>
<th>General description</th>
<th>Chance per annum<sup>1</sup></th>
<th>Project task: construction phase</th>
<th>Frequency<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected to happen</td>
<td>A</td>
<td>This event is known to occur >12 times per year</td>
<td>>50%</td>
<td>More than once during project</td>
<td>More than 10 per year</td>
</tr>
<tr>
<td>Almost certain</td>
<td>B</td>
<td>This event is expected to occur at least once in at least each year</td>
<td><50%</td>
<td>At least once during project</td>
<td>1/year</td>
</tr>
<tr>
<td>Likely</td>
<td>C</td>
<td>This event is likely to occur in some circumstances</td>
<td>10%</td>
<td>At least once in every 10 projects</td>
<td>Once every 2 to 10 years</td>
</tr>
<tr>
<td>Possible</td>
<td>D</td>
<td>This event might occur at some time</td>
<td>1%</td>
<td>At least once in every 100 projects</td>
<td>Once every 31 to 100 years</td>
</tr>
<tr>
<td>Unlikely</td>
<td>E</td>
<td>This event could occur at some time</td>
<td>0.1%</td>
<td>At least once in every 1,000 projects</td>
<td>Once every 131 to 1,000 years</td>
</tr>
<tr>
<td>Rare</td>
<td>F</td>
<td>This event is extremely unlikely to occur under any circumstances</td>
<td><0.1%</td>
<td>At least once in every 10,000 projects</td>
<td>Less than once every 1,000 years</td>
</tr>
</tbody>
</table>

Level Rank Description Frequency

- **A** Expected to happen: This event is known to occur >12 times per year > once a month
- **B** Likely: This event may occur 4 – 12 times per year at least once each term
- **C** Possible: This event may occur each year once per year
- **D** Unlikely: This event may occur every 2 – 5 years once per 2-5 years
- **E** Rare: This event occurs only in exceptional circumstances > 5 years

Consequences

<table>
<thead>
<tr>
<th>Frequency</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimal</td>
<td>A</td>
<td>100yrs</td>
<td>H</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Minor</td>
<td>B</td>
<td>Days</td>
<td>H</td>
<td>E</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Moderate</td>
<td>C</td>
<td>1/1000yrs</td>
<td>M</td>
<td>H</td>
<td>E</td>
<td>E</td>
</tr>
<tr>
<td>Serious</td>
<td>D</td>
<td>1/1000yrs</td>
<td>L</td>
<td>M</td>
<td>H</td>
<td>E</td>
</tr>
<tr>
<td>Major</td>
<td>E</td>
<td>1/1000yr</td>
<td>M</td>
<td>L</td>
<td>M</td>
<td>H</td>
</tr>
<tr>
<td>Catastrophic</td>
<td>F</td>
<td>1/1000yr</td>
<td>M</td>
<td>L</td>
<td>L</td>
<td>M</td>
</tr>
</tbody>
</table>

1. The frequency of occurrence per annum varies depending on the nature of the event involved during the construction or operation phases.
2. The frequency of occurrence per annum is based on the nature of the event involved during the construction or operation phases.

Diagram:

- Risk matrix for risk assessment.
- Flowchart for risk management process.
- Graphs and charts illustrating risk levels and mitigation strategies.

Arrow Energy go further
Risk Register

Identified Risk Event

<table>
<thead>
<tr>
<th>ID</th>
<th>Risk Event</th>
<th>Likelihood</th>
<th>Impact</th>
<th>Proposed Controls / Mitigation Measures</th>
<th>P</th>
<th>C</th>
<th>Risk Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>VN1</td>
<td>Third party use of private haul road</td>
<td>C</td>
<td>H</td>
<td>Facility design; planned road, traffic management plan</td>
<td>B</td>
<td>5</td>
<td>N</td>
</tr>
<tr>
<td>VN2</td>
<td>Third party use of private haul road</td>
<td>C</td>
<td>H</td>
<td>Accredited drivers using approved vehicles, traffic management plan, central road barriers</td>
<td>C</td>
<td>1</td>
<td>M</td>
</tr>
<tr>
<td>VN3</td>
<td>Third party use of private haul road</td>
<td>C</td>
<td>H</td>
<td>Harbour Pilot, dedicated berths, emergency response</td>
<td>E</td>
<td>3</td>
<td>H</td>
</tr>
<tr>
<td>VN4</td>
<td>Third party use of private haul road</td>
<td>C</td>
<td>H</td>
<td>Harbour Pilot, dedicated berths, emergency response</td>
<td>E</td>
<td>1</td>
<td>L</td>
</tr>
<tr>
<td>VN5</td>
<td>Threats from other neighbouring activities</td>
<td>C</td>
<td>H</td>
<td>Design and location of Air separation unit; compliance with OSHW regulations</td>
<td>E</td>
<td>2</td>
<td>N</td>
</tr>
</tbody>
</table>

Natural Events

<table>
<thead>
<tr>
<th>ID</th>
<th>Event</th>
<th>Likelihood</th>
<th>Impact</th>
<th>Proposed Controls / Mitigation Measures</th>
<th>P</th>
<th>C</th>
<th>Risk Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>NE1</td>
<td>Storm surge</td>
<td>C</td>
<td>H</td>
<td>Facility design; SOPs including evacuation procedures</td>
<td>C</td>
<td>3</td>
<td>L</td>
</tr>
<tr>
<td>NE2</td>
<td>Cyclones</td>
<td>C</td>
<td>H</td>
<td>Facility designed to prevailing standards</td>
<td>C</td>
<td>3</td>
<td>L</td>
</tr>
</tbody>
</table>

Risk Register

<table>
<thead>
<tr>
<th>ID</th>
<th>Risk Event</th>
<th>Likelihood</th>
<th>Impact</th>
<th>Proposed Controls / Mitigation Measures</th>
<th>P</th>
<th>C</th>
<th>Risk Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST1</td>
<td>Slag treatment</td>
<td>C</td>
<td>H</td>
<td>Facility design; Site selection, SOP</td>
<td>C</td>
<td>4</td>
<td>L</td>
</tr>
<tr>
<td>ST2</td>
<td>Slag removal</td>
<td>B</td>
<td>H</td>
<td>Facility Design, SOP, exclusion zones</td>
<td>B</td>
<td>3</td>
<td>M</td>
</tr>
<tr>
<td>ST3</td>
<td>Slag treatment</td>
<td>C</td>
<td>H</td>
<td>Facility design; Site selection, SOP</td>
<td>C</td>
<td>4</td>
<td>L</td>
</tr>
</tbody>
</table>
Volkswagen: Eyes on the road - YouTube www.youtube.com/watch?v=R2WNkYKeo8
Group exercise – application of risk assessment methods
Group exercise – application of methods

<table>
<thead>
<tr>
<th>Risk level</th>
<th>Target action</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Risk is intolerable (i.e. unacceptable). Immediate action is required, activity should not commence until further controls are identified to reduce the risk to an acceptable level.</td>
</tr>
<tr>
<td>Moderate</td>
<td>Risk is tolerable (i.e. acceptable). Action is required. Identify and implement controls to reduce risk in accordance with the principles of As Low As Reasonably Practicable (ALARP). These risks should be captured in the Project’s environmental management and monitoring plans.</td>
</tr>
<tr>
<td>Low</td>
<td>Risk is tolerable (i.e. acceptable). Action is desirable. Identify and implement controls to reduce risk in accordance with the principles of ALARP. These risks should be captured in the Project’s environmental management and monitoring plans.</td>
</tr>
<tr>
<td>Negligible</td>
<td>Risk is acceptable. Manage by routine / standard processes.</td>
</tr>
</tbody>
</table>
Management and conditioning of impacts and risks

1. Define project activity/design
2. Establish values and predicted impacts on these values
3. Assess the consequence of impact on a value/receptor
4. If high
 - If moderate
 - If low/ negligible
5. Identify and apply additional management measures
6. Residual Impact
7. Draft EIS and EM Framework

RISK ASSESSMENT PROCESS FOR UNPLANNED EVENTS
8. Identify possible fault/failure events
9. Assess the consequence of impact on a value/receptor
9. Establish likelihood/frequency of possible event
10. If extreme*
 10. If high/ moderate*
 10. If low*
5. Apply standard management measures
10. Identify monitoring program and contingency measures
10. Apply standard monitoring measures

* Categories as per AS4360

Arrow Energy
Key driver emerged about 2007 / 2008

- Concept design
 - Site selection study
- Preliminary design
 - Draft PER / EIS
 - Response document
 - Government approval
- Detailed design and procurement
 - Government approval
 - Permits / licences
 - Construction

FID
Uncertainty Assessment / Analysis:

Request For Information (RFI) – measure of success

Critical Information List (CIL) / List of Assumptions

Focus on achieving preferred environmental outcomes
Arrow Energy

Led to increasing size of EIS documents (2009)

![Graph showing the increase in number of pages in EIS documents over time.](image)
WA EPA 2009 - *Review of the Environmental Impact Assessment Process in Western Australia*

The key outcomes from the Review will be:

- **A new risk-based approach to EIA** – focus on the environmental risks and impacts that matter, greater consistency, rigour and transparency of decision-making.

Therefore - a prioritising exercise
Arrow Energy

Management and conditioning of impacts and risks

Overly prescriptive law = slow economic growth
No law = environmental degradation

Conditions
Legislation
Standards
Guidelines

Mongolia (Oyu Tolgoi)

China

Forecast for air pollution in and around China
Very serious | Serious | Not serious

Note: Forecast for airborne pollution particles as of noon on Feb. 1. Provided by Toshihisa Takenaka, associate professor at Kyushu University's Research Institute for Applied Mechanics.
Overly prescriptive law = slow economic growth
No law = environmental degradation

Outcome based law = sustainable development

Note: My position in 2010
Impact assessment and management

Does the EIS:

- clearly describe the criteria used to assess and categorise the level of impact to a value/receptor in terms of scale, intensity, duration, timing, frequency and overall significance of impacts

- clearly identify any uncertainties in impact assessment and explain how these have been taken into account, for example, through incorporating worst case scenarios and/or sensitivity analysis
<table>
<thead>
<tr>
<th>Risk assessment and management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does the EIS:</td>
</tr>
<tr>
<td>- provide a flow chart of the risk assessment process used</td>
</tr>
<tr>
<td>- clearly describe the likelihood and consequence criteria used to assess and categorise the level of risk to a value/receptor</td>
</tr>
<tr>
<td>- define what is considered an intolerable and a tolerable risk event</td>
</tr>
<tr>
<td>- discuss how the design/activities/management measures have been modified to avoid/minimise intolerable risks</td>
</tr>
<tr>
<td>- identify the residual risk on values/receptors after modifications to design/activity/management measures have been incorporated</td>
</tr>
<tr>
<td>- identify the monitoring that will be undertaken during the construction and operation phases to determine if the likelihood of a risk event occurring is increasing above that predicted</td>
</tr>
<tr>
<td>- identify contingency measures in the event that monitoring shows an increased likelihood of a risk event occurring</td>
</tr>
</tbody>
</table>
This report has indicated that all the identified impacts as a result of the project are acceptable and can be adequately managed. However, while the proposed draft environmental authority conditions in the EM Plan are comprehensive and substantially meet the requirements under the Act, numerous details would need to be addressed in consultation with the administering authority before a finalised suite of conditions could be applied through a draft environmental authority.

EHP Assessment Report (2011)
Cannington Life Extension Project EIS, BHP Billiton

Example of good conditioning:
• Impacts acceptable and can be managed
• Risks in the EM Plan need further consideration
Qld Gov:
• Developed Generic Draft Terms of Reference for EIS (2013)
• Moved to outcome based conditions in 2013 (Mining) and 2014 (Petroleum)
7 Assessment of critical matters

7.1 Critical Matters

7.1.1 This section sets out the scope of critical matters that should be given detailed treatment in the EIS. A critical matter is an aspect of the proposal that has one or more of the following characteristics:

- a **high or medium probability** of causing serious or material environmental harm or a **high probability** of causing an environmental nuisance;
- considered important by the administering authority and/or there is a public perception that an activity has the potential to cause serious or material environmental harm

EHP Final Terms of Reference for Baralaba North Continued Operations EIS; 2014
• A combination of the CALPUFF modelling system and TAPM was used to model air quality for three scenarios, specifically three indicative mine plan years 3, 7 and 11. The modelling did not take into account any mitigation measures that could be applied to reduce the potential air quality impacts of the project, so the results represent worst case scenarios.

• The 24-hour average PM10 concentrations during years 3 and 7 of project operations are predicted to exceed the air quality objective of 50μg/m3 at three of the ten sensitive receptors, without the implementation of dust mitigation measures.

• CCL would implement proactive and reactive dust control measures. These measures would include suitable dust level monitoring and wind speed alarms and the use of weather forecasting to adapt mining operations to reduce dust emissions at the nearest private receptors in order to achieve compliance with applicable air quality objectives.

• With the proposed dust management measures in place, it is reasonable to expect that the air quality objectives would be met during the operation of the BNCOP.
Management and conditioning of impacts and risks

1. Define project activity/design
2. Establish values and predicted impacts on these values
3. Assess the consequence of impact on a value/receptor
4. If high:
 - Identify and apply additional management measures
 - If moderate:
 - If low/ negligible:
6. Residual Impact
7. Draft EIS and EM Framework
8. Identify possible fault/failure events
9. Assess the consequence of impact on a value/receptor
10. If extreme:
 - Identify monitoring program and contingency measures
11. If high / moderate:
 - If low:
12. Apply standard monitoring measures

Categories as per AS4360
• Queensland Health requested the proponent to adequately assess predicted air quality during the construction and operational phases of the project against the health based air quality objectives.

• In response, the proponent referred (amongst other things) to the findings of the air quality model, which predicted that the project would meet the annual average PM10 air quality objective for protecting human health.

• In considering the adequacy of the proponent’s response to this issue, EHP notes that the predicted exceedences of the 24-hour average PM10 air quality objective (designed to protect human health) at some sensitive receptors were based on conservative estimates, without considering the potential reductions that could be achieved by the implementation of dust mitigation measures.

• Based on this information and the recommended draft EA conditions in Appendix 1 of this report that require the proponent to comply with the health based air quality objectives for PM10 and PM2.5 at sensitive receptors, EHP considers that this issue has been adequately addressed. [Appendix 1 requires compliance with 50μg/m3 limit for PM10].
Final ToR

• 8.7.1 Describe the **potential risks to people and property** that may be associated with the project in the form of a preliminary risk assessment for all components of the project and in accordance with relevant standards.

• 8.7.2 Provide details on the **safeguards that would reduce the likelihood and severity of hazards, consequences and risks to persons, within and adjacent to the project area(s)**. Identify the **residual risk** following application of mitigation measures. Present an assessment of the overall acceptability of the impacts of the project in light of the residual uncertainties and risk profile.

No requirement for assessment of risks to the environment?
4.8 HAZARDS AND SAFETY

Appendix O describes the potential hazards and safety risks associated with the BNCOP in the form of a preliminary risk assessment in accordance with Australian Standard/New Zealand Standard (AS/NZS)...

4.8.3 Potential Impacts

A number of hazardous materials and chemical substances would be used during construction, operations and decommissioning of the BNCOP.

4.8.4 Mitigation Measures and Management

The following processes and measures would be implemented at the BNCOP to reduce the risk of impacts on health, safety and the environment associated with the BNCOP:

- List of control measures - activities undertaken in accordance with legislation
• Queensland Health requested the proponent to provide information about how they would control and manage disease vectors…

• The Queensland Police Service (QPS) requested the proponent to incorporate into their planning crime-scene preservation requirements for incidents on-site that require a police investigation.

• QPS requested the proponent to include evacuation procedures at camps and work-sites into the emergency response plan.

• The Queensland Ambulance Service (QAS) requested the proponent to identify potential landing sites for both a rescue helicopter and fixed wing aircraft in the event of an emergency.

5.11.6.5 Conclusions and recommendations

The EIS adequately addressed the requirements of the final TOR with regard to hazard and safety risks associated with the project. The major hazards and risks were identified and suitable mitigation measures were proposed to minimise the potential impacts to people and property.
8.5.3 Potential **impacts** and mitigation measures

The most serious potential **risks** to water quality in XX Creek, XX Creek, XX Creek and the XX River would be during the construction phase, through export of sediment and associated pollutants, such as nutrients, and the discharge of untreated acid drainage from acid sulfate soils.

4.4.3 Potential **Impacts**

Key waste management **risks** associated with the XX include inappropriate storage or disposal of waste material that have the potential to impact on the following environmental values:
Arrow Energy

Has it reduced the size of an EIS?

- 1,670 (2010) Alpha Coal
- 1,135 (2012) South Galilee Coal Project
- 966 (2012) Bowen Gas Project
- 1,940 (2013) Carmichael Mine and Rail
- 1,010 (2014) Red Hill Mining Lease
- 1,105 (2014) New Acland Coal Mine Stage 3
What should we be striving for?

Do we need a change or more education?

Outcome based law = sustainable development

Do we need an EIS or just the Environmental Authority (EA)?

Consultants....

Proponents....
Risk assessments are important!

LIFE
Everything is easier when you know the cheat codes.
While Arrow Energy Pty Ltd has endeavoured to ensure that all information provided in this publication is accurate and up to date at the time of publication, it takes no responsibility for any error or omission relating to this information. Furthermore, the information provided shall not constitute financial product advice pursuant to the Australian Financial Services Licence held by Arrow Energy Pty Ltd’s related body corporate. To the maximum extent permitted by law, Arrow Energy Pty Ltd will not be liable for any cost, loss or damage (whether caused by negligence or otherwise) suffered by you through your use of this publication.