

Why monitor water?

- Key indicator of rehab effectiveness
- Quantitative data for assessment of above
- Monitor and mitigate avoid surprises
- Revegetation planning and management
- Compliance
- Current and future stakeholders

Why monitor water in rehab?

Why are we measuring?

- Key indicator for rehab methods:
 - Others veg composition, erosion, plant cover etc.
- Water holding capacity (WHC) in capping soil
- Infiltration volumes & quality to where ?
- Mobilisation (e.g. metals/metalloids)
- Deep drainage / groundwater
- Surface runoff volumes & quality optimal

Input measurement

- Essential to calculate water balances
 - Good quality automatic rain gauge and/or irrigation monitoring equipment
 - Logging and data storage capacity
 - Precipitation
 - Intensity and duration
 - Manual rain gauges across the area if rehab area is large.
 - Located near rehab not 20km away !

Water Holding Capacity

- Soil moisture and WHC primary determinant in vegetation growth and persistence
 - Rainfall / irrigation
 - Soil types, drying tests to determine moisture
 - Soil probes
 - Manual, neutron, capacitance, tensiometer, gypsum blocks
 - Boots in the field and auger / spade / hands.

Infiltration rates

- Is water being held in capping topsoil and utilised efficiently for rehab vegetation?
- How much into lower zones or drainage through sides or toes of slopes.
 - Lysimeter
 - Multi stage piezometer cluster
 - Measurement of drainage e.g. interception trenches
 - Observation

Deep drainage

- Is there 'leakage' of contaminants to groundwater ?
- How do we measure?
 - Water balance
 - Lysimeters / piezo clusters
 - Surrounding piezo network
 - Leachate pumping and sampling
 - Tracers and modelling
 - Mobilised metals, sulphur, pH

Equipment

Evaporation

- Co-disposal, waste, dewatering storages
 - Bathymetric surveys, depth monitoring

Seepage from storages

Seepage

- Electromagnetic surveys (e.g. EM38)
- Magnetometric resistivity surveys
- Dedicated monitoring piezo network
- Specialised pumping and sampling
- Monitor surrounding bores and springs

Surface water

- Suspension / transport
 - Surface runoff, erosion, sediment mobilisation
 - Soil types. Sodic soils around Moranbah are dispersive, Al and Fe levels may be elevated.
 - Sample and analyse to determine load and physiochem properties

pH and acidity problems

- AMD, acidification or alkalisation
 - Mine and spoil dumping plans and management
 - Sulphur minerals
 - Acid or alkaline waste waters
- Monitoring
 - PAF, NAG and ARD monitoring where sulphitic material
 - Sample and measure pH, alkalinity, PAF, NAG.
 - Observation of other monitoring sites streams, GW

What are we monitoring?

- Basic physiochem, TSS, pH alkalinity
- Metals/metalloids exacerbated if acidification and increased vertical drainage
- Salts
- Organic contaminants
- Site specific contaminants e.g. cyanide
- Bio-health aquatic ecosystems as part of whole environment.

What are we monitoring?

- Other What has been chucked into your codisposal site or spoil ??
 - PCB from faulty electrical transformer
 - Waste e.g. oils and lubricants
 - Chemicals triazines, cleaning, drilling fluids

Or.....SURPRISE !!

For discussion

- Prescriptive monitoring
- Site specific programs
- ANZECC methodology
- 'Flat lining'

Variable intensity of monitoring

Water monitoring objectives

- Compliance Government
- Meeting stakeholder expectations landholders, communities.
- Building good science
- Sharing knowledge EIANZ
- Minimising environmental impacts
- Modelling of contaminants movement / plumes
- That's what WE see as objectives

Monitoring considerations

Engineer

Procurement

Anonymous remote person

Just tick a box at the lowest cost !!

A light moment ©

Stakeholders

Life of mine

Other Stakeholders

After the party is over

"It's not my problem - I'll be outta here in three years !"

- Good science should prevail
- \$\$ are important but should not dictate the program
- As scientists we have a responsibility to gather reliable information that all stakeholders (apart from the wombat) can utilise to make informed decisions, and minimise the voodoo.

Thought for today

