

"What entities to measure and how they should be measured is best guided not by a generic framework but rather by well-defined and scientifically tractable questions" (Lindenmayer and Likens 2010)

Background to the presentation

Field survey techniques

Recording the vertebrate fauna assemblage in a potential impact area - trapping and trapping layout patterns, digging in effects, trap hygiene, trap deaths, disease risk

- Trapping site layout design considerations for assemblage detections,
- Drift fences
- Pit-traps
- Funnel traps
- Cage traps
- Aluminium box traps
- Incidental observations
- Spotlighting

Format of the presentation

- General considerations of survey design and approach
- Methodologies employed for mammals and reptiles
- Considerations of ethics
- Basic analytical considerations

General considerations - Standards for vertebrate surveys

Project objectives are met by appropriate design and sampling methods

- Considerations of sampling
 - Stratified
 - Replicated
 - Repeatable
 - Verifiable

"Most information for least effort"

General considerations - Site Selection

- Examination of available spatial data.
 - Digital elevation models
 - Landsystem mapping
 - Vegetation mapping
 - Satellite imagery
 - Aerial Photography
 - Surface geology
- Fire History
- Climate data
- Reconnaissance of predetermined sites

General considerations - Species group and major survey detection methods

Group	Pit tra ps	Funn el Trap s	Medium Aluminiu m Box	Large Aluminiu m Box	Cage	Spot- lighting from vehicle	Spot- lighti ng on foot	Head torchin g	Diurnal Observat ion/ Active Searchin g	Search ing for tracks & signs etc	Soun d/ calls	Recordin g Techniqu es including Anabat	Mist nettin g	Har p tra ps	Tri p line s	Rem ote came ra	Hai r tub es
Small Mammals < 30g (eg Sminthopsis)	Х		Х			S	S			S						S	S
Medium Mammals <2500g (eg Isoodon)	S		х	х	Х	Х	S			Х						S	S
Large Mammals >2500g (eg Petrogale)				х	х	Х	S	S	х	Х						S	S
Bats (Megachiropter a)									Х				Х		Х		
Bats (Microchiropter a)							S	S	x			x	x	х	Х		
Birds						S	S		Χ	S	X	S	S				
Small snakes <45cm(eg Parasuta)	X	Х				Х	Х	Х	Х								
Medium-Large Snakes> 45cm (Demansia)		х				х	х	х	х	S							
Small –medium Lizards <150mm(eg Pogona)	х	х	S			S	S	х	Х								
Large lizards>150mm (Varanus)	S	Х		S	S	S	S	S	Х	Х							
Frogs	Х	S				S	S	X	X	S	Χ	X					

Environmental Protection Authority and Department of Environment and Conservation (2010) *Technical Guide - Terrestrial Vertebrate Fauna Surveys for Environmental Impact Assessment* (eds B.M. Hyder, J. Dell and M.A Cowan). Perth, Western Australia.

http://www.epa.wa.gov.au/EPADocLib/3281 Faunatechnicalguide.pdf

General considerations-seasonal capture of reptiles and mammals

General considerations-humidity and temperature

- Interpolated surfaces for skinks and geckos from the Murchison Bioregion
- Data derived from more than 200 trap nights using 2666 captures for skinks and 3743 for geckos
- Skinks show moderate increases in activity from temperature alone
- A combination of humidity and temperature are associated with high captures of geckos

General considerations-moonlight

- Frequently asserted that bright moonlight decreases mammal captures.
- Complex to analyse
- Examined pit capture rates in two seasons
- No significant change with moonlight in either season.

General considerations - Summary

Methodologies must be appropriate to the objectives of the study

- Considerations should be given to
 - Knowledge of the natural history
 - Trophic niche of the group considered
 - Seasonality
 - Temperature
 - Humidity
 - Moon phase

Methodology - Pit and funnel traps

- Distance between traps
- Alternating trap types
- Trap type efficiency
- Continuous lines versus individual traps or other designs
- Number of traps per site
- Number of trap days

Methodology – Pit trap position

- Capture rates in relation to trap position
- Data is from Lorna Glen and accumulated for 48 pit lines
- Inside traps capture significantly more than end traps
- End traps capture ~
 2/3 of inside traps

Methodology – Buckets, PVC Pipe & Funnels

Differences in capture rates between buckets and PVC pipe for all fauna (4 locations and 23 surveys)

Differences in capture rates between buckets and funnel traps

Methodology – Number of pits

- Data from a species rich environment
- Predicted total number of species from the Chao1 estimator is 82
- Number of species caught is 79 for reptiles and small mammals
- Increasing number of traps increases species accumulation

Methodology- captures on sequential days

- 13 survey periods with 24 sites and 12 across two lines at each site
- 4043 reptile captures
- 1343 mammal captures
- There is little reduction in capture rates for reptiles
- Mammals show a marked reduction

Methodology - Mammal trapping

Focus on Elliott traps and cages

- Density, type and arrangement of traps has to reflect objectives of survey
- Effective for larger mammals and rodents, less effective for small dasyurids (eg *S. longicaudata*)
- In areas where no large mammals remain pits are generally better.
- Variable species response to trap type and timing

Mammalian considerations- Elliott captures on successive days

- Data from four surveys with 12
 Elliott traps at each of 24 sites
- Traps run for 7 consecutive nights
- A total of 185 small mammal captures
- Quite variable but trend is opposite to that of pit traps with increased capture rates over successive nights

Mammalian considerations – D. hallucatus monitoring

Mammalian considerations – non invasive methods

- Cameras
- Searching for sign
- Hair tubes (targeted)
- Sand pad surveys (difficult to identify many species reliably)
- Spotlighting/ head torching
- Incidental records

Summary of selected methodology

- Seasonality and weather conditions
- Trap type
- Distances between pits
- Number of successive days of trapping
- Number of traps per site and in array
- Type of design dependant on environment and target group(s)
- Assumptions about traps
- Supplementary methods but suffer in terms of quantifiable data

Ethical considerations - Trap deaths and or injuries

- Exposure to heat or cold
- Predation or attack by other animals
- Physical injury resulting from the trapping
- Handling
- Trap hygiene

Ethical considerations – Environmental exposure

Analysis- adequacy of sampling

- 50% of the total species number caught after 103 individuals and 2 days
- 75% of the total species number caught after 437 individuals and 14 days
- Chao1 and Jacknife 1 estimators close agreement
- Indicates that by the end of the survey ~ 88% of trappable species caught.

Analysis - assemblages

Δ	\			
	species	site 1	site 2	site 3
	а	11	1	4
	b	8	1	4
	С	5	1	4
	d	3	2	4
	е	2	3	4
	f	1	5	4
	g	1	8	4
	h	1	11	4

Summary

- Sampling regimes
- Examination of spatial data
- Appropriate traps defined in EPA/DPaW guidelines
- Season and climate are important
- Buckets out perform other similar traps
- Long lines and number of pits
- Sequential days
- Understanding spatial movement patterns helps with trapping
- Ethics paramount
- Determination of sampling adequacy
- Importance of abundance

Analysis – importance of abundance

Species Accumulation Curves: Buckets vs. PVC pipes

- An example from 35 days over two years covering spring and autumn in the Goldfields
- Buckets were responsible for 1364 of 2028 individual captures, or 64.3%. $\chi^2 = 219.21$, p < 0.0001
- Difference between species abundances for Buckets and PVC Pipes using Wilcoxon's matchedpairs test (test statistic 503.5, P<0.001).
- Only one species that was more abundant in pipes was statistically significant- N. alexis ($\chi^2 = 20.22$, p < 0.0001)

Ethical considerations- heat risk in pit traps

Solar exposure to base of traps (20 L buckets and 250 X 600mm PVC pipe) for Perth

Analysis – sampling adequacy

Reptiles								
	Trip 1	Trip 1+2	Trip 1+2+ 3	Trip 1+2+3+4				
Trip 1+2	0.82							
Trip 1+2+3	0.79	0.97						
Trip 1+2+3+4	0.80	0.96	0.98					
Trip +2+3+4+5	0.79	0.92	0.95	0.97				

Mammais								
	Trip 1	Trip 1+2	Trip 1+2+ 3	Trip 1+2+3+4				
Trip 1+2	0.67							
Trip 1+2+3	0.50	0.71						
Trip 1+2+3+4	0.59	0.74	0.98					
Trip +2+3+4+5	0.54	0.76	0.92	0.92				

General considerations – seasonal variation is species richness

Morethia ruficauda

Pseudomys desertor

Transform: Square root

Resemblance: S17 Bray Curtis similarity

Similarity

80

